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Abstract

This paper describes mazimum likelihood estuma-
tion techniques for performing rover localization in
natural terrain by matching range maps. An occu -
pancy map of the local terrain is generated using slereo
vision. The position of the TOVeT withrespectto a pre-
viously generated occupancy map s then computed by
comparing the maps using a probabilistic formulation

of Hausdorff matching techniques. Qur motivalion for

this work is the desire for greater autonomy in Mars
rovers. These techniques have been applied to data
oblam ¢4 from the Sojourner Mars rover and ran on-
board the Rocky 7 Mars TV€T prototype.

1 Introduction

Visual sensors can be used to reduce the positional
uncertainty in mobile robots that is accumulated due
to dead- reckoning error [13]. This paper describes a
method for performing self-localization in natural ter-
rain by matching a range map generated from the
robot cameras (the local map) to a range map en-
compassing the same terrain that has been previously
generated (the global map).

10 perform localization, we first compute an occu-
pancy map of the terrain fromsterco imagery. This
local map is compared to the global map using a simi-
larity measure based on the Hausdorfl distance [5]. We
have generalized the measure to arbitrary probability
distributions using the principal of maximum likeli-
hood estimation and modified it toapply to terrain
occupancy maps. The best relative position between
the maps is located using a hierarchical search that
guarantees that the best position in a discretized pose
space is found.

Our motivation for pursuing this work is the Long
Range Science Rover project at J PL,which has de-
veloped the Rocky 7Mars rover prototype [4]. There
is a current need for increased sel-locali,,iion ability

in Mars rovers in order to perform with greater au-
tonomy from both operators on Earth and from the
lander bringing the rover to Mars. For example, the
Sojourner Mars rover is limitedto moving short dis-
tances during each downlink cycle due to positional
uncertainty, The method by which dead-reckoning er-
rors are corrected for Sojourner is through a human
operator overlaying a model of the rover on stereo
range data computed from downlinked imagery of the
rover taken by the lander [12].

‘Jhere are a number of scenarios in which these tech-
niques can be used in the context of a Mars mission.
While operating in a small area containing several sci-
ence targets (such as the area around the lander that
Sojourner has operated in),we may perform localiza-
tion using the panoramic imagery generated at the
center of the area as our global map. While this is not
crucial whenthe lander can see the rover. The next
generation Mars rover will have a mast with stereo
cameras that will allow it to generate panoramic itm-
agery when it is not near the lander. See Figure 1.
We can then perform localization by matching the
panoramic range maps generated using the mast im-
agery to maps generated from either thelow-to-the-
ground navigation cameras, if possible, or by raising
the mast to iimage interesting terrain, if necessary.

Previous work on performing localization using vi-
sual landmarks for rovers on extra-terrestrial missions
[1] has concentrated on rough localization in a large
area by detecting mountain peaksand maximizing the
posterior probability of the position given the direc-
tions to the mountains. The average error in the lo-
calizatjon of this systen is 91 metersin the two exper-
iments reported. In contrast,we are concerned with
fine localization in a relatively small area, and achieve
errors much smaller than a meter.

The techniques described here are effective when-
ever a dense range map can be generated in the robot
local coordinate frame and we have a range map of
tile same terrain in the frame of reference in which
we wish to localize the robot. We can thus use either



Figure 1: Rocky 7 Mars rover prototype in the JPL Mars
yard with mast deployed.

rover mast Of navigation imagery to generate the local
map. The globs] map might also consist of the rover
mast or navigation imagery, butit could also consist of
imagery from the lander (including descent Ma8CTY )
and it is possible that orbitalimagery could be ysed,
although it is not Tkely that we will have orbital imm-
agery of sufficient resolution to use for accuraterover
localization in the near future [8].

We have tested these techniques by matching ter-
raint on Liars thatwasimaged with Sojourner’s stereo
cameras to a terrain map generated from the stereo
cameras on the Pathfinder lander. The results indi-
cate that self-localization can performed with these
techniques unearly as well as a human operator with-
out requiring a downlink cycle. These techniques have
also been implemented on-board Rocky 7 with good
results.

2 Terrain maps

While we could potentially use any method for gen-
erating three-dinmensional range data of the terrain.
we concentrate on the use of stereo vision, since this
is the method by which Rocky 7 computes range maps

for obstacle det ect ion. The techniques that we use to
compute t hie stereo range data have been described
elsewhere [6, i’], so we suminarize ouly tile important
points here.

Anofl-line step, where the stereo camera rig is cal-
ibrated, must first be performed. We use a camera
W odel that allows arbitrary afline transformation o f
the image plane (14] and that has been extended to
include radial lens distortion (2 The remainder of
t he ethod is perfortned on-line.

At run-tume, each mnage &irst warped to remove
the lens distortion and the tmages are rectified so
that the corresponding scan-lines yield corresponding
epipolar lines in the limage. Thedisparity between the
left andrightimages is measured for each pixel by min-
itnzing t he sutn-of-squiared-difference (SSD) measure
of windows around the pixelin the Laplacian of the
image over afinite disparity range. Subpixel disparity
estimates arc computed using parabolic interpolation
on tile SSD values neighboring the minimum. Out-
liers are removed through consistency checking and
stnoothing is performed over a 3x3 window to reduce
noise. Finally, the coordinates of each pixel are com-
puted using triangulation.

Once arange map has been computed from the
stereo umnagery, we convert it into a voxel-based map
representation. We first rotate the data such that it
has the same relative orientation as the map we are
comparing it to. Here we operate under the assump-
tion that the orientation of the robot is known through
sensors other than vision (for example, both Sojourner
and Rocky 7T have a gyrocormpass and accelerometers
andRocky i also uses a sun sensor for orientation de-
terminat ion). However, these techniques can be gen-
eralized to determine the robot’s orientation, as well.

The nextstep is to bin therange points in a three-
dimensional occupancy map of the surroundings at
some specified scale. We eliminate tile need to search
over the possible translations of the robot in the z-
directionby subtracting a local average of the terrain
height froth each cell (i.e. a high-pags filter). This step
is not strictly necessary, and it reduces our ability to
determine height changes in t he posit ion of the robot,
but it also reduces the computation time that is re-
quired to perform [Ocahzationz\ subsequent step can
be perforimed to determine the rover height, if desired.
Fachcell in the occupancy map that contains a range
pixel is said to be occupied. and the others are said to
be unoccupied.

¥

2 gives an example of a terrammmap that
was generated using imagery from the Mars Pathfinder
russion.

Figure




Figure 2:
Terrain map generated from stereo imagery.

3 Map similarity measure

We have developed a similarity measure for compar-
g images and maps by reformulating a conventional
image matching measure based on tile Hausdorft dis-
tance [5] in probabilistic terms using the principal of
maximum likelihood est imation [9].

In order to formulate the matching problem in
terms of maximum likelihood estimation, we must
have some set 0f measurements that arc a function
of the rover position. We use the distances fromthe
occupied voxelsinthe local occupancy map to their
closest voxels io the global map of theterrain with
respect, to some relative position betweenthemaps.
Since we search for the best relative position between
these maps, these distances are variables. Let us say
that we have n occupied voxels io our local map. We
denote the distances for these voxels at some position
of the rover by Dy .. ... D, While these distances are
not independent of each other, we model them as such.
Recent work on determining the the probability ofa
false positive for matching with the Hausdorfl distance
[3, 10] provides support for treatingthese variables in-
dependently. We thus formulate the likelihood func-
tion for the rover position, X, asthe product of the
probability distributions of these distances:

n
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The position yielding the naximum likelihood is
taken to be the position of the rover. The prob-
ability distribution function (Y D¥) that is used for
each voxel, p( D;; X ), deternines the matching mea-
sure that. is used betweenthe occupancy maps. A
simple two-valued PDF yields a measure equivalent
to the Hausdorft fraction (which is a commonly used
measure for image matching [9]):

ifD; <é

otherwise
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The relative values of &k andk2 are irrelevant (as long
as ko > O). In practice, we use k; = O andk, = 1.

Superior results can be achieved by modifying this
probability distribution function [9]. Uncertainties in-
herentinthe occupancy mapscan be incorporated and
we need not use this siinple two-valued PDF. For ex-
atnple, we have found that a normal distribution with
a constant additive termn works well:

(3)

P(Di 1) = max ky 4 ke N0l ks (g
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where GG is the set of occupied pixels in the global
map, andt(l;) is the location of theith occupied pixel
in the local map accord jug to some relative position,
{, between the maps. This distribution models the
case where the errorin feature localization in the oc-
cupancy map has a norinal distribution. The added
constant allows for cases where features are not found
at all (e.g. duetorange shadows). Note that &y, ka,
and k3 are constants that should be set based on the
error distribution in the locat jon of the pixels and the
probability of missing a feature,



4 Finding the most likely position

We locate the most likely rover position by adapt-
ing a multi-resolution search strategy that has been
applied to conventional Hausdorfl matching applica-
tions [10, 1 1].

As noted previously, we assume that the orientation
of the rover is known from other sensors. Furthermore,
the application of a high-pass filter to the occupancy
maps removes the need to search in the z-direction to
determine the position of the robot. Wc thus search
only in the x- and y-directions. This *WO- dimensional
pose space is discretized at the same resolution as the
occupancy maps so that neighboring positions in the
pose space move the relative positions of the maps by
one map cell.

We first test the nominal position of the rover given
by the dead-reckoning so that we have an initial po-
sition and likelihood to compare against. Next, the
pose space is divided into rectilinear cells.Fach cell
is tested using, conservative testing techniques to de-
termine whether it could contain a position that is
better than the best found so far. Cells that cannot
be pruned are divided into smaller cells, which are ex-
amined recursively. When a cell containing a single
pose in the discretized pose space is reached, this pose
is tested explicitly.

The key to this method is a quick method to test
the cells. A cdl is allowed to pass the test if it dots not
contain a good pose, but it should never prune a cell
that contains a pose that should pass the test, since
this could result in the best position being missed.

To determine whether a cell C could contain a pose
that is superior to the best one found so far according
to the similarity measure described above, we examine
the discrete pose ¢ closest to the center of the cell. In
order to place a bound on the Lest position within the
cell, we compute the maximum distance between the
location to which a cell in the local occupancy map is
transformed into the global occupancy map by ¢ and
by any other pose in the cell. Dencotethis distance AC.
If we treat poses as functions that transform positions
in the local map into positions in the global map then
A .can be written:

Ac = maxmax fip(l) = (Bl (.5)

where [, is the set of occupied pixels in tile local map.

Let DE denote the Maxinmui jikelihood that the ith
occupied cell in the local map can achieve according
to (4) with respect to any pow in cell C:

DY < Inp(Dg(x);c), (6)

< max
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where & is the ith occupied cell in the loca map and
D¢ (r) is the distance transform of the global map.
The distance transform yields the distance from any
cell in the map to the closest occupied pixel in the
map. This operation determines, for each occupied
cell in the local map, the maximum likelihood that
can be achieved over a radius of A_from the relative
position in the global map that the local cell is mapped
by c. These values can often be calculated efficiently
over the entire global map, depending on the L ,norm
used [9].

A bound on the overall likelihood yielded by the
best position in the cell is given by:

LX) <> DF
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If this likelihood does not surpass the best that we
have found so far, wecan prune the entire cell from
the search. QOtherwise the cell is divided into two cells
of the same size by slicing it along the longest axis
and the process is repeated recursively until cells at
thelowest level arc reached.

In order to implement thisprocedure efficiently, a
breadttl-first search of the cell hierarchy is used. We
maintain the invariant that each of the cells at the
samelevel of the search tree nave the same dimensions
and the breadth-first search examines all of the cells
at each level before proceeding to the next level. Note
that A¢ is afunction of only the dimensions of the cell,
and not the position of the cell, when the pose space
consists of translations. Furthermore, each [),C is a
function of only A¢ and the position that the center
of thecell maps the local cell into the globa map, so we
can computeall of these values efficiently for each level
of the search tree using a dynamic algorithm [9]. This
allows each cell to be processed very quickly. For each
occupiedcell in the local map, we must only determine
the position to which it is transformed into the global
map, look up the appropriate )¢ at this position and
add it to the running total.

5 Results

We have tested these techniques using data from
the Mars Pathfinder mission. A map of the terrain
surrounding the Pathfinder lander was first generated
using stercoimagery. For eachposition of Sojourner



Figure 3: Sojourner on sol 2i(near “Souflle™). (a) Composite image from the lander. (b) Linage from Sojourner.

a which we tested the localization techniques, we 8€11 -
erated au occupancy map of the terrain usingrauge
data from Sojourner’s stereo cameras. This local map
was then compared to the global map fromthelander.

Infortunately, this has only been possible at a few
locations due to a limited amount of data returnedto
Farth, a lack of interesting terrain in some of theim-
agery we do have, aud a lack of ground truth for any
positions except where Sojourner was imaged by tile
lander cameras. In practice, thesetechniques could
he exercised much inore frequently since they would
uot require downlinkingimage data to Earthandthe
ground truth is only necessary for testing. We envi-
sion a scenario where the data from the rover’s navi-
gation cameras, which would be operating frequently
iu order to perform obstacle detection, would be used
to performlocalization whenever suflicient terrain was
evidentin the imagery. In addition, the imagery from
mast cameras could be used for localization] whenthe
positional uncertainty grows beyond the desired level
and the hmagery from the navigation cameras is uun-
suitable.

As au example of the data, Figure3 shows the po-
sition of Sojourner as seenfrom the lander and the
view from Sojourner at the eud of sol 21! of the Mars
Pathfinder mission. In addition, Figure 4shows asub-
set of the digital terrain map of the site computedus-
ing lander imagery, which we used as the global map,
and a digital terrainmap computed from Sojourner
umagery . which we used as tile local map for sol 21.
Note that the stereo data obtainedfrom Sojourner is
uot as good as we hope t0 achievein future missions.
Accurate stereo data is achieved only for thecentral

YA solis a Martianday

portion of the Sojourner imagery due to inaccurate
calibration of the fish-eye lenses. The field-of-view
that we have to work with is thus relatively small.
However, we have achieved good localization results
with this data.

‘I'able 1 showstheresults of localization using the
techniques described inthispaper versus the localiza-
tion that was obtained by human operator through
overlaying a rover modelon the stereo data obtained
fromimaging the rover fromthe lauder. For sol 42,
we have two localization results, oue prior to aud one
after a turn by therover. The operator localization
was perforined after tile turn.

The results show’ close agreementbetween our tech-
niques and the oj)t’rater localization for four of the
SOIS. For sois 4,27, aud 72.there is some disagreement.
Possible sources of error include inaccurate calibration
of eitherthe rover or lander camerasand operator er-
ror in performing localization. Manual examination
of themaps indicates that thelocalization techniques
determine the qualitatively correct position io these
cases. We conclude that these techniques cau perform
localization nearly as well as a human operator.

Note that these techniques require ouly a few sec-
onds to perform localizatior, hoth for these tests,
which have been performed ou a work-station, aud
in our implementation on-board Rocky 7.

6 Summary

We have described amethod for performing rover
self-localization by PeT forming maximum likelihood
matching of terrain maps.  We first generate a lo-



(b)

Figure 4:Digital terrain maps that were matched to local-
ize Sojourner on sol 21. Black areas indicate no data. (a)
Map of terrain near “Souffle’ created using lander imagery

{taken on sol 2). (b) Map of terrain in front of Sojourner
from rover cameras (taken ou sol 21).

cal map of the terrain using, stereo vision. Thismap
is comparedto a global map encomnpassing the same
terrain to determine the optimal relative position be-
tween the maps using a maximum likelihood fortnu-
lation of image matching techniques. This technique
is guaranteed to findthe best position in some dis-
cretization of the pose space and does not require an
initial estimate of tile rover position.

The goal of this method is to provide greater au-
tonomy for Mars rovers and we have applied these
techniques to data from the Mars Pathfinder mission.
While tbe data that we have is limited, and the quality
is not as high as we expect in future issions, rover

Operator Localization |
sol x Y X Y
4| 328 -269] 301 -2.64
10 | 434 -3.24| 424 -3.27
21 3.32 -260 | 3.37 -2.65
27 | -5.42 285 -4.98 275
42a | -3.00 -1.86 | -3.02 -1.87
42h | -3.00 -1.86 | -3.00 -1.87
72| -8.93 -157 | -899 135

I"'able 1: Comparison Of rover positions determined by a
human operator overlaying a rover modelon stereo data
of the rover and by the localization techniques described
in this paper.

localization with accuracy of nearly the same qual-
ity as that obtained from ahuman operator has been
demonstrated.

Areas that bear further study are tile developinent
of a localizability measure for terrain maps i order
to plan effective localization steps, and the develop-
ment of a probabilistic uncertainty measure so that
these techniques can be combined with other meth-
ods for performing localization. In the future, we plan
to integrate these techniques into an organized navi-
gation methodology. in which a Kalman filter is used
to synuthesize a rover position estimate from a variety
of sensors and the rover’s path planner interacts with
the Kalman filter andlocalization techniques to plan
when and where local ization should be performed.
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